

Predicting Lake Erie Wave using XGBoost

Haoguo Hu¹, Andre van der Westhuysen³, Philip Chu², and Ayumi Fujisaki-Manome^{1,4}

¹Cooperative Institute for Great Lakes Research, the University of Michigan, Ann Arbor
 ²National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory
 ³IMSG at National Weather Service, National Centers for Environmental Prediction Environmental Modeling Center
 ⁴Climate&Space Science and Engineering, the University of Michigan

3rd international workshop on waves, storm surges, and costal hazards University of Notre Dame Oct 1 - 6, 2023

• Background and objectives

• WaveWatch III (WW3) and results and limitations

• XGBoost and results

• Conclusion

Limitations of physics-based model for wave forecast

- Underestimate high wave during storm events
- Expensive computing time

WW3 Lake Erie case

Bathymetry and Buoy Stations

Node:6106, Cell:11509 Wind forcing is interpolated from observations, including buoys and airport along the coast

Significant Wave Height (SWH) comparison: WW3 vs Observation

Computing time for one model year: 12 hours with 60 CPUs

7

Limitations of WW3 for wave forecast

- Underestimate high wave during storm events
- Large computing time
- Tons of unused data. Data being used only for comparison, verification, and assimilation

• Machine learning is an attractive alterative approach

Traditional data fitting: Guess a function (here quadratic) and then find a, b, c

Machine/deep learning : Don't have to guess a function, Train a function to fit the data

How ? What is trained function looks like ?

The training function in machine learning

A function expressed as sum of linear functions

$$Y = f(x) = w_1 x_1 + b_1 + w_2 x_2 + b_2 + w_3 x_3 + b_3$$

 $+ \dots$

Taylor's theorem^{[4][O][O]} — Let $k \ge 1$ be an integer and let the function $f : \mathbb{R} \to \mathbb{R}$ be k times differer a function $h_k : \mathbb{R} \to \mathbb{R}$ such that

$$f(x)=f(a)+f'(a)(x-a)+rac{f''(a)}{2!}(x-a)^2+\dots+rac{f^{(k)}(a)}{k!}(x-a)^k+h_k(x)(x-a)^k$$

and

 $\lim_{x
ightarrow a}h_k(x)=0.$

This is called the Peano form of the remainder.

To find the parameters – like backward engineering

Linear function, but with many variables and relationships

Deep learning = multiple layers

The training Function can also be a tree function

If input a 11 m/s wind, what the possible wave height might be?

A snapshot of the trees in Lake Erie case of XGBoost

How many trees and how many branches needed? Solved automatically by XGBoost model

XGBoost (Extreme Gradient Boost tree) for Lake Erie wave prediction

XGBoost function trained using the same wind for WW3

Training data: 1995-2015 buoy data. Prediction:2016-2017 training time: ~3 minutes with 1 CPU

SWH comparison: XGBoost vs Observation

SWH comparison: XGBoost vs WW3

Y axis: Model predicted wave height

X axis: Observed wave height

How much data needed for XGBoost ?

Usually, the more data, the better. However, XGBoost behaves a little different

- XGBoost improve strong wave forecasts during storm events.
- XGBoost model perform well on both large and small sets of training data
- XGBoost need much mush less computing time than WW3

• Improve wave prediction through incorporating machine learning methods with physics-based models

Hu, H., A. Van der Westhuysen, P. Chu, and A. Fujisaki-Manome (2021). Predicting Lake Erie wave heights and periods using XGBoost and LSTM. Ocean Modelling, Volume 164.

Thank you !